Line profiles ============= Doppler ^^^^^^^ This is a binned Doppler line profile which conserves the area at each grid point for any resolution used. It requires a mass of the molecule (Dalton) defined. Example :: temperature 2000.0 absorption Doppler mass 20.0 Doppler Sampling or Doppl0 ^^^^^^^^^^^^^^^^^^^^^^^^^^ :: temperature 2000.0 absorption Doppler Sampling mass 20.0 `Doppler Sampling` is used for the simple sampling method. Gaussian ^^^^^^^^ This is a binned Gaussian line profile which conserves the area at each grid point for any resolution used. It requires an `HWHM` value to be defined. Example :: temperature 2000.0 absorption gaussian hwhm .321 Gaussian Sampling or Gauss0 ^^^^^^^^^^^^^^^^^^^^^^^^^^^ `Gaussian Sampling` is used for the simple sampling method. Example :: temperature 2000.0 absorption gaussian Sampling hwhm .321 Voigt (Sampling) ^^^^^^^^^^^^^^^^ Example :: temperature 2000.0 absorption voigt hwhm .321 mass 16.0313 cutoff 25 (cm-1) Lorentzian ^^^^^^^^^^ This profile uses a sampling method, where the cross sections at a given wavenumber points represents an aveerage over the wavenumber bin. Example :: temperature 2000.0 absorption lorentzian hwhm .321 cutoff 25 (cm-1) A binned version can be invoked using the ``BINNING`` keyword or with the ``Lorentz0`` (``LORENTZIAN0'``) line profile, e.g. :: temperature 2000.0 absorption lorentz0 hwhm .321 cutoff 25 (cm-1) or :: temperature 2000.0 absorption lorentzian binning hwhm .321 cutoff 25 (cm-1) For the binned profile method, the cross sections at a given wavenumber point represents an aveerage over the wavenumber bin. Error cross sections -------------------- To invoke the error cross section calculations, a free floating ``ERROR`` keyword is used. Here, ExoCross uses the energies uncertainties to define uncertainties of the cross-sections in a form of absorption (emission) error cross-sections for different line profiles as given by .. math:: \left(\Delta \sigma(\tilde{\nu})\right)^2 = \sum_{i,j} \left(\frac{\partial \sigma(\tilde{\nu})}{\partial \tilde{\nu}_{ij}}\right)^2 \left[(\Delta \tilde{E}_i)^2 + (\Delta \tilde{E}_j)^2 \right], where :math:`\Delta \tilde{E}_i` and :math:`\Delta \tilde{E}_j` are the uncertainties of the upper and lower states. Assuming a given line-profile :math:`f(\tilde\nu)`, the derivative wrt the energy is given by .. math:: \frac{\partial \sigma(\tilde{\nu})}{\partial \tilde{\nu}_{ij}} = I_{if} \frac{\partial f(\tilde{\nu})}{\partial \tilde{\nu}_{ij}}. Here is an input example: :: elorentz error hwhm 0.2 It is important that the energy uncertainties are provided in the column 5 of the States file. The error cross sections can be combined with the uncertainty filters: :: filter unc 0.01 end Error cross sections for the Lorentzian profile (Elorentz) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ For the Lorenztian line profile centred at :math:`\tilde{\nu}_{ij}` with HWHM :math:`\gamma` given by .. math:: f(\tilde\nu,\tilde\nu_{ij},\gamma)_{\rm Lo} = \frac{\gamma}{\pi} \frac{1}{(\tilde{\nu}-\tilde{\nu}_{ij})^2+\gamma^2} the corresponding derivative wrt :math:`\tilde{\nu}_{ij}` is given by .. math:: \frac{\partial f(\tilde\nu)_{\rm Lo}}{\partial \tilde\nu_{ij}} = \frac{\gamma}{\pi} \frac{2(\tilde{\nu}_{ij}-\tilde{\nu})}{\left[(\tilde{\nu}-\tilde{\nu}_{ij})^2+\gamma^2\right]^2} Pre-dissociative line profiles ------------------------------ In case of pre-dissociative effects, the lines van be broadened beyond the collisional or Doppler broadening. For these cases, ExoCross can use the lifetimes :math:`\tau` from the States file (usually column 6 after the uncertainty column) to estimate the pre-dissociative line broadening (HWHM) via .. math:: \gamma_{\rm prediss} = \frac{1}{2\pi C \tau} \frac{1}{2} where :math`C` is the speed of light in cm/s, :math:`\tau` is the lifetime in s and the factor :math:`1/2` is to convert to the HWHM :math:`\gamma`. ExoCross will apply the largest of the two line broadening values, :math:`\gamma_{\rm prediss}` and :math:`\gamma_{\rm collis}`. This option is activated via a free floating keyword ``PREDISSOCIATION``. By default, the lifetimes column is assumed to be column 6. Otherwise it is important to specify the number of the lifetime column as part of the ``QN`` section using the keyword ``lifetime`` :: predissociation QN lifetime 5 END .. note:: The lifetime column specification can be combined with the ``non-LTE`` section, since ``QN`` and ``non-LTE`` are essentially aliases of each other. Pseudo-Voigt profiles (less accurate) ------------------------------------- Pseudo-Voigt ^^^^^^^^^^^^ See wiki_ .. _wiki: https://en.wikipedia.org/wiki/Voigt_profile](https://en.wikipedia.org/wiki/Voigt_profile The Pseudo-Voigt Profile (or Pseudo-Voigt Function) is an approximation of the Voigt Profile V(x), using a linear combination of a Gaussian curve G(x) and a Lorentzian curve L(x) instead of their convolution. The Pseudo-Voigt Function is often used for calculations of experimental Spectral line shape profiles. The mathematical definition of the normalized Pseudo-Voigt profile is given by: :math:`V_p(x)= \eta \cdot L(x) + (1-\eta) \cdot G(x)` with :math:`0 < \eta < 1` There is several possible choices for the \eta parameter. A simple formula, accurate to 1%, is: :math:`\eta = 1.36603` (:math:`f_L/f`) - 0.47719 :math:`(f_L/f)^2 + 0.11116(f_L/f)^3` where :math:`f = [f_G^5 + 2.69269 f_G^4 f_L + 2.42843 f_G^3 f_L^2 + 4.47163 f_G^2 f_L^3 + 0.07842 f_G f_L^4 + f_L^5]^{1/5}` Example :: absorption pseudo hwhm .321 mass 16.0313 cutoff 25 (cm-1) Pseudo-Liu ^^^^^^^^^^ (Liu_Lin_JOptSocAmB_2001) Example :: absorption pseudo-Liu hwhm .321 mass 16.0313 cutoff 25 (cm-1) Pseudo-Rocco ^^^^^^^^^^^^ (Rocco_Cruzado_ActaPhysPol_2012) Example :: absorption pseudo-Rocco hwhm .321 mass 16.0313 cutoff 25 (cm-1) Voigt-parameters ^^^^^^^^^^^^^^^^ `Species` or `Broadener` starts a section to define the Voigt-type broadening parameters :math:`\gamma(Voigt) = \sum_i \gamma_i (T^0_i/T)^n P/P^0_i {\rm ratio}_i` The keywords are: `gamma` or `gamma0` is the reference HWHM (cm-1), `n` is the exponent n_i, `T0` is the reference T (K),usually 298, `P0` is the reference pressure in bar, usually 1, `ratio` is the mixing ratio of the species (unitless), for example the solar mixing ratio of H2 and He is 0.9 and 0.1. The name of the species should be the first thing on the line. The `pressure` value in bar must be specified (otherwise P=1 bar is assumed). The effective molar `mass` of the molecule/atom mass be specified (1.0 is the default). Example :: mass 16.0 pressure 0.5 Temperature 1300.0 Species H2 gamma 0.05 n 0.4 t0 298.0 ratio 0.9 He gamma 0.04 n 1.0 t0 298.0 ratio 0.1 end A :math:`J`-dependent set of broadening parameters can be provided in an external file using the ExoMol Diet structure, e.g. :: mass 16.0 pressure 0.5 Temperature 1300.0 species H2 gamma 0.0207 n 0.44 t0 298.0 file 1H2-16O__H2.broad ratio 0.84 He gamma 0.043 n 0.02 t0 298.0 file 1H2-16O__He.broad ratio 0.16 end where `file` is the filename with parameters. Two Diet models are available in ExoCross are ``a0`` (J"-dependence), ``a1`` (J", PQR-dependence), ``m0`` (|m|-dependence) and ``m1`` (m-dependence), where :math:`m=-J,J,J+1` for P, Q, R branches, respectively. The broadening file has the following structure :: a1 0.0145 0.500 0 1 a1 0.0156 0.417 1 2 a1 0.0164 0.350 2 3 where the 1st column describes the Diet model, the following two columns are the Voigt's gamma and n, and the last two are J" and J' (i.e. in the opposite to the conventional order). The values ``gamma`` and ``n`` in the ``species`` section are the default values in case of missing :math:`J`s in the broadening file. For :math:`J>J_{\rm max}`, the values :math:`\gamma` and :math:`n` the values of :math:`J=J_{\rm max}` are assumed. More examples of .broad: :: m1 0.0156 0.417 -2 m1 0.0164 0.350 -1 m1 0.0145 0.500 0 m1 0.0156 0.417 1 m1 0.0164 0.350 2 Voigt-Quad ^^^^^^^^^^ `Voigt-Quad` is the Voigt obtained using the Guass-Hermite quadrature integrations. An analytical integration of the Lorentzian is used for the average contribution for each bin. The effect of the line truncation with cutoff parameter is folded back into the main part using the analytical expression. The line guarantees the area to conserve. Example :: Temperature 500 (K) pressure 10. (bar) absorption Voigt-Quad mass 16.0313 cutoff 25 (cm-1) nquad 20 (N quadrature points) Species H2 gamma 0.05 n 0.4 t0 298.0 ratio 0.9 He gamma 0.04 n 1.0 t0 298.0 ratio 0.1 end